Построение модели ARMA (p,q)
Построив для наглядности в приложении Statistica 6.0 графики АКФ и ЧАКФ (рисунок 3.1) получили, что АКФ убывает, а ЧАКФ имеет резко выделяющееся значения на 1-м лаге. ЧАКФ подтверждает, что значения АКФ. начиная со второго лага, обусловлены корреляцией на 1-м лаге.
Рисунок 3.1 - АКФ и ЧАКФ для курса AAPL
Согласно свойствам АКФ и ЧАКФ можно предположить [4], что курс акции AAPL описывается моделью ARMA (1,0). Будем строить данную модель в виде:
По выборочным данным в приложении Statistica 6.0 получены оценки коэффициентов модели. Аналитический вид может быть представлен следующим уравнением:
Несмотря на то, что по критерию Стьюдента на 5% -ом уровне значимости свободный член оказался незначим: , но из экономических соображений его не будем удалять из уравнения модели.
По критерию Фишера уравнение регрессии значимо, поскольку
.
Коэффициент детерминации , что говорит об очень хорошем качестве построенной модели. На 98.7% модель ARMA (1,0) аппроксимирует исходные данные временного ряда, остальное приходится на ошибку.
На рисунке 3.2 приведем график остатков модели (3.2).
Рисунок 3.2 - График остатков модели (3.2)
Визуальный анализ дает возможность предположить, что ряд остатков является стационарным, поскольку в нем отсутствует определенная направленность. Проверим, выполняются ли для остатков условия Гаусса-Маркова.
. С учетом погрешности в вычислениях математическое ожидание остатков имеет значение .
. Стандартная ошибка регрессии . Несколько значений остатков лежат вне интервала
и являются своего рода выбросами, резко выделяющимися на фоне общей картины остатков, что, возможно, вызвано неточностью в вычислениях. Поэтому отклонить или принять гипотезу о нормальном распределении остатков затруднительно. Применяя статистику Жака-Бера, предварительно вычислив коэффициенты асимметрии и эксцесса, установили, что гипотеза о нормальном распределении остатков отклоняется, поскольку значение статистики
, что гораздо больше квантили распределения
равной 5.991.
. Для проверки остатков на случайность используем критерий "поворотных точек". Для данного ряда остатков получили . Следовательно, выборка остатков случайна.
. Для рассматриваемого ряда остатков при проверке на наличие гетероскедастичности ранговый коэффициент корреляции Спирмена оказался равным . Оценив статистическую значимость
с помощью t-критерия:
, и сравнив эту величину с табличной
при уровне значимости
, получили, что
. Следовательно, гипотеза об отсутствии гетероскедастичности остатков не отклоняется.
Еще статьи по экономике
Инфляция в России причины, последствия и перспективы снижения
Инфляция
является одной из серьезных проблем экономики различных стран, в том числе и
России. Проблема инфляции проявляется в повышении общего уровня цен на товары и
услуги.
...
Статистический анализ уровня и динамики цен на непродовольственные товары Оренбургской области
Переход к рыночной экономике наполняет новым содержанием работу коммерсантов, менеджеров, экономистов. Это предъявляет повышенные требования к уровню их статистической подготовки. Овладение ...
Исследование и оценка уровня деловой активности предприятия ООО Амурметалл-Литье на основании его финансовой отчетности
В
современных условиях экономического обособления и самостоятельности
хозяйствующего субъекта успех или неуспех организации во многом зависит от
стратегии её развития. Выбор х ...